Researchers identify 75 genetic regions that influence red blood cell formation
08 Dec 2012
New research has been revealing how red blood cells are made and how the body regulates the amount of haemoglobin that is packaged in red blood cells at any time.
Genomic analysis techniques have doubled the number of genetic regions that are likely to be involved in red blood cell formation and a subsequent study using fruit flies has given insights into what these regions do.
Haemoglobin is the protein which captures oxygen from the lungs for transport and delivery to tissues. It colours blood cells red and each day hundreds of millions of fresh red blood cells have to be formed by blood stem cells to replace the ones which come to the end of their life cycle.
Anaemia, one of the most common disorders for which people visit their surgery, ensues if the production of new red blood cells is insufficient or their lifespan is shortened. The new genetic information is laying the foundations for future studies into the roots of anaemia by uncovering new biological pathways and mechanisms involved in controlling the size and number of red blood cells and the levels of haemoglobin.
The researchers used genome-wide association studies to identify genetic regions that appeared to influence the formation of red blood cells and their haemoglobin content.
"We studied the genetic influences behind six different physical parameters of red blood cells that reflect the volume and number of red blood cells and the levels of haemoglobin," says Dr John Chambers, lead author from Imperial College, London.