Process improves catalytic rate of enzymes by 3,000 per cent
18 Apr 2012
Light of specific wavelengths can be used to boost an enzyme's function by as much as 30 fold, potentially establishing a path to less expensive biofuels, detergents and a host of other products.
In a paper published in The Journal of Physical Chemistry Letters, a team led by Pratul Agarwal of the Department of Energy's Oak Ridge National Laboratory described a process that aims to improve upon nature - and it happens in the blink of an eye.
"When light enters the eye and hits the pigment known as rhodopsin, it causes a complex chemical reaction to occur, including a conformational change," Agarwal said. "This change is detected by the associated protein and through a rather involved chain of reactions is converted into an electrical signal for the brain."
With this as a model, Agarwal's team theorised that it should be possible to improve the catalytic efficiency of enzyme reactions by attaching chemical elements on the surface of an enzyme and manipulating them with the use of tuned light.
The researchers introduced a light-activated molecular switch across two regions of the enzyme Candida antarctica lipase B, or CALB - which breaks down fat molecules - identified through modeling performed on DOE's Jaguar supercomputer.
"Using this approach, our preliminary work with CALB suggested that such a technique of introducing a compound that undergoes a light-inducible conformational change onto the surface of the protein could be used to manipulate enzyme reaction," Agarwal said.