Intricate, curving 3D nanostructures created using capillary action forces

21 Oct 2010

Twisting spires, concentric rings, and gracefully bending petals are a few of the new three-dimensional shapes that University of Michigan engineers can make from carbon nanotubes using a new manufacturing process.

The process is called ''capillary forming,'' and it takes advantage of capillary action, the phenomenon at work when liquids seem to defy gravity and spontaneously travel up a drinking straw.

The new miniature shapes have the potential to harness the exceptional mechanical, thermal, electrical, and chemical properties of carbon nanotubes in a scalable fashion, said A. John Hart, an assistant professor in the Department of Mechanical Engineering and in the School of Art & Design.

The 3D nanotube structures could enable countless new materials and microdevices, including probes that can interface with individual cells, novel microfluidic devices, and lightweight materials for aircraft and spacecraft.

A paper on the research is published in the October edition of Advanced Materials, and is featured on the cover.

''It's easy to make carbon nanotubes straight and vertical like buildings,'' Hart said. ''It hasn't been possible to make them into more complex shapes. Assembling nanostructures into three-dimensional shapes is one of the major goals of nanotechnology and nanomanufacturing. The method of capillary forming could be applied to many types of nanotubes and nanowires, and its scalability is very attractive for manufacturing.''