A versatile, clean and efficient way to enhance widespread application of carbon nanotubes

31 Aug 2010

Researchers at Imperial College London have developed a versatile, practical and efficient method for activating sites on the surface of carbon nanotubes (CNTs) and subsequently binding a wide range of molecules to them.

This new method will enable large-scale manufacture of modified CNTs.

The new method, reported this month in the journal Chemical Science, overcomes a major hurdle in the development of industrial scale applications for CNTs. It provides manufacturers with a method that, in principle, can be used to modify the surface chemistry of the underlying nanotube structure, on a large scale. Surface modification can provide new properties or enable subsequent processing steps: for example, molecules grafted to the CNTs may introduce catalytic activity or provide compatibility with particular solvents.

Our approach is potentially a very significant step towards manufacturing carbon nanotubes with specific chemical characteristics, so-called functionalisation, at an industrial scale," said Professor Milo Shaffer, lead author of the study from the Department Chemistry at Imperial College London. "Our method is extremely practical because, in principle, it can exploit existing infrastructure and yet it remains extremely versatile; the huge range of molecules that can be bound to the CNTs makes the technology adaptable to almost any application."

"Our technique is intrinsically scalable and, for the first time, it should be feasible to functionalise CNTs on the same scale as they are produced. This change is significant as industry"s current capacity to manufacture CNTs is hundreds, if not thousands, of times greater than its capacity to add complex surface chemistry. This technique should increase the availability of functionalised CNTs, enable new applications that require manufacturing in bulk, and hence enhance the growth of the market," added Professor Shaffer.

The method that Professor Shaffer and his colleagues have developed should allow CNTs to be readily tailored to potential applications such as sensor networks, filters, electrodes for electrochemical devices, advanced catalysts and to improve CNT compatibility in, for example, composite materials, solvents, and electrolytes.