Bound neutrons pave way to free ones

11 Feb 2011

A study of bound protons and neutrons conducted at the Department of Energy's Thomas Jefferson National Accelerator Facility has allowed scientists, for the first time, to extract information through experimentation about the internal structure of free neutrons, without the assistance of a theoretical model. The result was published in the Feb. 4 issue of Physical Review Letters.

 
Some experiments seem to show that the building blocks of protons and neutrons inside a nucleus are somehow different from that of free ones. Other experiments show they behave differently when they pair up: they move faster and frequently overlap.

The major hurdle for scientists who study the internal structure of the neutron is that most neutrons are bound up inside the nucleus of atoms to protons. In nature, a free neutron lasts for only a few minutes, while in the nucleus, neutrons are always encumbered by the ubiquitous proton.  

To tease out a description of a free neutron, a group of scientists compared data collected at Jefferson Lab and the SLAC National Accelerator Laboratory that detail how bound protons and neutrons in the nucleus of the atom display two very different effects. Both protons and neutrons are referred to as nucleons.

"Both effects are due to the nucleons behaving like they are not free," says Doug Higinbotham, a Jefferson Lab staff scientist.

Nucleons appear to differ when they are tightly bound in heavier nuclei versus when they are loosely bound in light nuclei. In the first effect, experiments have shown that nucleons tightly bound in a heavy nucleus pair up more often than those loosely bound in a light nucleus.

"The first thing was the probability of finding two nucleons close together in the nucleus, what we call a short-range correlation," says Larry Weinstein, a professor at Old Dominion University. "And the probability that the two nucleons are in a short-range correlation increases as the nucleus gets heavier."