NASA'S Gravity Probe B confirms two Einstein theories

07 May 2011

Albert EinsteinStanford and NASA researchers have confirmed two predictions of Albert Einstein's general theory of relativity, concluding one of the space agency's longest-running projects.

Known as Gravity Probe B, the experiment used four ultra-precise gyroscopes housed in a satellite to measure two aspects of Einstein's theory about gravity. The first is the geodetic effect, or the warping of space and time around a gravitational body. The second is frame-dragging, which is the amount a spinning object pulls space and time with it as it rotates.

After 52 years of conceiving, building, testing and waiting, the science satellite has determined both effects with unprecedented precision by pointing at a single star, IM Pegasi, while in a polar orbit around Earth. If gravity did not affect space and time, Gravity Probe B's gyroscopes would point in the same direction forever while in orbit.  But in confirmation of Einstein's general theory of relativity, the gyroscopes experienced measurable, minute changes in the direction of their spin as they were pulled by Earth's gravity.

The findings appear online in the journal Physical Review Letters.

"Imagine the Earth as if it were immersed in honey. As the planet rotated its axis and orbited the Sun, the honey around it would warp and swirl, and it's the same with space and time," said Francis Everitt, a Stanford physicist and principal investigator for Gravity Probe B.

"GP-B confirmed two of the most profound predictions of Einstein's universe, having far-reaching implications across astrophysics research," Everitt said. "Likewise, the decades of technological innovation behind the mission will have a lasting legacy on Earth and in space."