Rutgers researchers identify materials that may deliver more 'Bounce'

12 Mar 2011

Rutgers researchers have identified a class of high-strength metal alloys that show potential to make springs, sensors and switches smaller and more responsive.

The alloys could be used in springier blood vessel stents, sensitive microphones, powerful loudspeakers, and components that boost the performance of medical imaging equipment, security systems and clean-burning gasoline and diesel engines.

 
Credit: Physical Review Letters
Nano-sized particles embedded in alloys can make alloys highly elastic and enable them to convert electrical and magnetic energy into movement.

While these nanostructured metal alloys are not new – they are used in turbine blades and other parts demanding strength under extreme conditions – the Rutgers researchers are pioneers at investigating these new properties.

''We have been doing theoretical studies on these materials, and our computer modeling suggests they will be super-responsive,'' said Armen Khachaturyan, professor of Materials Science and Engineering in the Rutgers School of Engineering. He and postdoctoral researcher Weifeng Rao believe these materials can be a hundred times more responsive than today's materials in the same applications.

Writing in the March 11 issue of the journal Physical Review Letters, the researchers describe how this class of metals with embedded nanoparticles can be highly elastic, or ''springy,'' and can convert electrical and magnetic energy into movement or vice-versa. Materials that exhibit these properties are known among scientists and engineers as ''functional'' materials.

One class of functional materials generates an electrical voltage when the material is bent or compressed. Conversely, when the material is exposed to an electric field, it will deform. Known as piezoelectric materials, they are used in ultrasound instruments; audio components such as microphones, speakers and even venerable record players; autofocus motors in some camera lenses; spray nozzles in inkjet printer cartridges; and several types of electronic components.