U-M researchers create reprogrammed stem cells for disease studies

26 Jul 2011

The University of Michigan's Consortium for Stem Cell Therapies has achieved another of its primary goals: reprogramming adult skin cells so they behave like embryonic stem cells.

 
A microscope image showing a colony of induced pluripotent stem cells created by the U-M Consortium for Stem Cell Therapies. Photo courtesy of Sue O'Shea.

The reprogrammed cells are called induced pluripotent stem cells, or iPS cells. They display many of the most scientifically valuable properties of embryonic stem cells while enabling researchers to bypass embryos altogether.

U-M researchers will use the iPS cells side by side with human embryonic stem cells to study the origin and progression of various diseases and to search for new treatments. Three of the consortium's first five iPS cell lines came from skin cells donated by patients with bipolar disorder and will be used to study that condition.

"The two main goals we had when we started the consortium were to make human embryonic stem cell lines and iPS cell lines. Now we've accomplished both those objectives," said consortium co-director Sue O'Shea, a professor of cell and developmental biology at the Medical School.

The Consortium for Stem Cell Therapies was formed in March 2009. In October 2010, consortium researchers announced they had created the state's first human embryonic stem cell line. Six months later they announced they had created the state's first human embryonic stem cell lines that carry the genes responsible for inherited disease.

One of the consortium's central goals has been to create disease-affected cell lines of both iPS cells and human embryonic stem cells, then to compare them.