Discovery casts enzymes in new light
09 Nov 2011
A tree outside Oak Ridge National Laboratory researcher Pratul Agarwal's office window provided the inspiration for a discovery that may ultimately lead to drugs with fewer side effects, less expensive biofuels and more.
Just as a breeze causes leaves, branches and ultimately the tree to move, enzymes moving at the molecular level perform hundreds of chemical processes that have a ripple effect necessary for life.
Previously, protein complexes were viewed as static entities with biological function understood in terms of direct interactions, but that isn't the case. This finding, published in PLoS Biology, may have enormous implications.
"Our discovery is allowing us to perhaps find the knobs that we can use to improve the catalytic rate of enzymes and perform a host of functions more efficiently," said Agarwal, a member of the Department of Energy laboratory's Computer Science and Mathematics Division.
Making this discovery possible was ORNL's supercomputer, Jaguar, which allowed Agarwal and co-author Arvind Ramanathan to investigate a large number of enzymes at the atomistic scale.
The researchers found that enzymes have similar features that are entirely preserved from the smallest living organism - bacteria - to complex life forms, including humans.