Itsy-bitsy DNA spider: Molecules behave like robots
22 May 2010
A team of scientists from Columbia University, Arizona State University, the University of Michigan, and the California Institute of Technology (Caltech) have programmed an autonomous molecular "robot" made out of DNA to start, move, turn, and stop while following a DNA track.
Image courtesy of the National Science Foundation |
The development could ultimately lead to molecular systems that might one day be used for medical therapeutic devices and molecular-scale reconfigurable robots – robots made of many simple units that can reposition or even rebuild themselves to accomplish different tasks.
A paper describing the work appears in the current issue of the journal Nature.
The traditional view of a robot is that it is "a machine that senses its environment, makes a decision, and then does something – it acts," said Erik Winfree, associate professor of computer science, computation and neural systems, and bioengineering at Caltech.
Milan N. Stojanovic, a faculty member in the Division of Experimental Therapeutics at Columbia University, led the project and teamed up with Winfree and ASU Biodesign Institute researcher, Hao Yan, a professor of chemistry and biochemistry and an expert in DNA nanotechnology, and with Nils G. Walter, professor of chemistry and director of the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan in Ann Arbor, for what became a modern-day self-assembly of like-minded scientists with the complementary areas of expertise needed to tackle a tough problem.
Shrinking robots down to the molecular scale would provide, for molecular processes, the same kinds of benefits that classical robotics and automation provide at the macroscopic scale. Molecular robots, in theory, could be programmed to sense their environment (say, the presence of disease markers on a cell), make a decision (that the cell is cancerous and needs to be neutralized), and act on that decision (deliver a cargo of cancer-killing drugs).