A new algorithm designed to make cardiopulmonary resuscitation more effective

17 Mar 2018

1

In the event of a cardiorespiratory arrest, two actions are crucial for the patient's survival — cardiopulmonary resuscitation (CPR) and defibrillation. CPR consists of rhythmically compressing the patient's chest to generate a minimum flow of blood in order to minimise the deterioration of vital organs —the heart and the brain. 

And defibrillation involves applying an electric shock to try to reverse the arrhythmia. "It is essential to perform CPR properly for the manoeuvre to be effective, and that is not easy even for highly trained personnel, since the chest has to be compressed at the appropriate frequency and depth (between 100-120 compressions per minute and between 5 and 6 cm," explained Digna María González-Otero, author of the work.
The quality of the compressions is related to the patient's survival. That is why the resuscitation guidelines recommend the use of feedback systems to monitor the quality of CPR in real time. 
"These devices are usually placed between the patient's chest and the rescuer's hands and guide the rescuer to help him / her achieve the target depth and frequency of the compression," pointed out the UPV / EHU researcher. 
So, researchers in the UPV / EHU's Signal and Communications Group have developed an algorithm to calculate the depth and frequency of the compressions on the basis of chest acceleration. "In other words," said González-Otero, "just by placing an accelerometer on the patient's chest we can measure, in real time, the depth and frequency at which the compressions are being performed, and then correct the rescuer if necessary so that he/she performs quality CPR".
On sale shortly
The work published in the prestigious PLOS ONE journal validates the use of the new algorithm by demonstrating that it is very accurate in calculating the frequency and depth of the compressions when the acceleration signals measured in the chests of actual patients with cardiorespiratory arrest are analysed.
In view of the results obtained, the company Bexen Cardio, located in the Basque town of Ermua, is starting to market a device to assist the CPR used by this algorithm. It is a flexible, very thin device resembling a cushion. 
"The device functions when it is connected to the defibrillator and is the screen of the defibrillator which tells the rescuer whether he/she has to press harder, work faster, etc.," says Digna María González-Otero. 
"We could say that it is a straightforward, intuitive accessory of the defibrillator and which is geared, above all, towards the emergency services," she adds. In fact, "some emergency services are already using it to validate its use in actual patients, to see whether it works as expected, whether it is convenient for the rescuer, whether it meets expectations, etc.", pointed out González-Otero. Bearing in mind the results being achieved, its mass marketing is expected to take place within a few months.

Business History Videos

History of hovercraft Part 3 | Industry study | Business History

History of hovercraft Part 3...

Today I shall talk a bit more about the military plans for ...

By Kiron Kasbekar | Presenter: Kiron Kasbekar

History of hovercraft Part 2 | Industry study | Business History

History of hovercraft Part 2...

In this episode of our history of hovercraft, we shall exam...

By Kiron Kasbekar | Presenter: Kiron Kasbekar

History of Hovercraft Part 1 | Industry study | Business History

History of Hovercraft Part 1...

If you’ve been a James Bond movie fan, you may recall seein...

By Kiron Kasbekar | Presenter: Kiron Kasbekar

History of Trams in India | Industry study | Business History

History of Trams in India | ...

The video I am presenting to you is based on a script writt...

By Aniket Gupta | Presenter: Sheetal Gaikwad

view more
View details about the software product Informachine News Trackers