Research on porcupine’s quills could help engineers design better medical devices
By By Anne Trafton, MIT News Office | 24 Dec 2012
Understanding the mechanisms behind quill penetration and extraction could help engineers design better medical devices.
Anyone unfortunate enough to encounter a porcupine's quills knows that once they go in, they are extremely difficult to remove. Researchers at MIT and Brigham and Women's Hospital now hope to exploit the porcupine quill's unique properties to develop new types of adhesives, needles and other medical devices.
In a new study, the researchers characterised, for the first time, the forces needed for quills to enter and exit the skin. They also created artificial devices with the same mechanical features as the quills, raising the possibility of designing less-painful needles, or adhesives that can bind internal tissues more securely.
There is a great need for such adhesives, especially for patients who have undergone gastric-bypass surgery or other types of gastric or intestinal surgery, according to the researchers. These surgical incisions are now sealed with sutures or staples, which can leak and cause complications.
''With further research, biomaterials modeled based on porcupine quills could provide a new class of adhesive materials,'' says Robert Langer, the David H. Koch Institute Professor at MIT and a senior author of the study, which appears this week in the Proceedings of the National Academy of Sciences.
Jeffrey Karp, an associate professor of medicine at Harvard Medical School and co-director of the Centre for Regenerative Therapeutics at Brigham and Women's Hospital, is also a senior author of the paper. Lead author is Woo Kyung Cho, a postdoc in the Harvard-MIT Division of Health Sciences and Technology (HST).