Virtual heart sheds new light on heart defect
16 Jan 2013
A virtual heart, developed at The University of Manchester, is revealing new information about one of the world's most common heart conditions.
Researchers at the School of Physics and Astronomy used cutting edge technology to build an advanced computational model of an anatomically correct sheep's heart. It was made by taking a series of very thin slices of the heart, imaging them in 2D and then using a computer programme to render them into a 3D model.
The reconstruction includes details of the complex fibre structure of the tissue, and the segmentation of the upper chambers of the heart into known distinctive atrial regions.
Single-cell models that take into account information about the electrical activity in different atrial parts of regions the heart were then incorporated into the model. The virtual heart was then used to investigate the condition atrial fibrillation (AF).
Professor Henggui Zhang, who led the research, explains why they wanted to study AF, ''Atrial fibrillation (AF) affects approximately 1.5 per cent of the world's population. In the UK more than 500,000 patients have been diagnosed with the condition which causes an irregular heart rate. It is also known to increase the risk and severity of stroke. Despite its prevalence very little is known about what causes AF. We hoped our model would allow us to understand the mechanisms of this condition to ultimately help create better treatments.''
AF occurs when abnormal electrical impulses suddenly start firing in the upper chambers of the heart. These impulses override the heart's natural pacemaker, which can no longer control the rhythm of the heart. This desynchronises the heart muscle contraction and reduces the heart's efficiency and performance.