Microscopy yields first proof of ferroelectricity in simplest amino acid
21 Apr 2012
The boundary between electronics and biology is blurring with the first detection by researchers at Department of Energy's Oak Ridge National Laboratory of ferroelectric properties in an amino acid called glycine.
A multi-institutional research team led by Andrei Kholkin of the University of Aveiro, Portugal, used a combination of experiments and modelling to identify and explain the presence of ferroelectricity, a property where materials switch their polarisation when an electric field is applied, in the simplest known amino acid - glycine.
"The discovery of ferroelectricity opens new pathways to novel classes of bioelectronic logic and memory devices, where polarization switching is used to record and retrieve information in the form of ferroelectric domains," said coauthor and senior scientist at ORNL's Center for Nanophase Materials Sciences (CNMS) Sergei Kalinin.
Although certain biological molecules like glycine are known to be piezoelectric, a phenomenon in which materials respond to pressure by producing electricity, ferroelectricity is relatively rare in the realm of biology. Thus, scientists are still unclear about the potential applications of ferroelectric biomaterials.
"This research helps paves the way toward building memory devices made of molecules that already exist in our bodies," Kholkin said.
For example, making use of the ability to switch polarisation through tiny electric fields may help build nanorobots that can swim through human blood. Kalinin cautions that such nanotechnology is still a long way in the future.