Isotope near 'doubly magic' tin-100 flouts conventional wisdom
22 Oct 2010
The unique capabilities of the Holifield Radioactive Ion Beam Facility enabled researchers to discover surprising behavior in tin-101.
Tin may seem like the most unassuming of elements, but experiments performed at the Department of Energy's Oak Ridge National Laboratory are yielding surprising properties in extremely short-lived isotopes near tin-100's "doubly magic" nucleus.
Experiments performed with the exotic nucleus tin-101, which has a single neutron orbiting tin-100's closed shell of 50 protons and 50 neutrons, indicate an unexpected reversal in the ordering of lowest states in the nucleus. The finding appears to violate a standard scenario offered by the nuclear shell model that has been the cornerstone for understanding the atomic nucleus for more than half a century.
The international team of experimentalists and theorists was led by Iain G. Darby of the University of Tennessee (UT), who is now in Belgium, and Robert Grzywacz, a physics professor at UT and a former Wigner Fellow at ORNL. The experiment, performed at ORNL's Holifield Radioactive Ion Beam Facility, found that the ground states of orbiting neutrons unexpectedly swap when three neutrons are added to the closed-shell tin-100 nucleus.
"In fact, previously the ground state of tin-101 was assumed to be identical to that of tin-103, tin-105, and tin-107. Those conform to the standard picture. But we've found that tin-101 has a flipped ground state," Grzywacz said.
The researchers theorize that the swapping of ground-state spins between tin-101 and tin-103 is due to the neutrons' unusually strong orbital dependence of the pairing interaction and the relatively small difference between orbital energy states in tin-101.