A mix of tiny gold and viral particles – and the DNA ties that bind them
28 Jan 2011
Scientists have created a diamond-like lattice composed of gold nanoparticles and viral particles, woven together and held in place by strands of DNA.
The structure – a distinctive mix of hard, metallic nanoparticles and organic viral pieces known as capsids, linked by the very stuff of life, DNA – marks a remarkable step in scientists' ability to combine an assortment of materials to create infinitesimal devices.
The research, done by scientists at the University of Rochester Medical Center, Scripps Research Institute, and Massachusetts Institute of Technology, was published recently in Nature Materials.
While people commonly think of DNA as a blueprint for life, the team used DNA instead as a tool to guide the precise positioning of tiny particles just one-millionth of a centimeter across, using DNA to chaperone the particles.
Central to the work is the unique attraction of each of DNA's four chemical bases to just one other base. The scientists created specific pieces of DNA and then attached them to gold nanoparticles and viral particles, choosing the sequences and positioning them exactly to force the particles to arrange themselves into a crystal lattice.
When scientists mixed the particles, out of the brew emerged a sodium thallium crystal lattice. The device ''self assembled'' or literally built itself.