High-performance simulation, neutrons uncover three classes of protein motion
01 Oct 2011
Molecular motion in proteins comes in three distinct classes, researchers at the Department of Energy's Oak Ridge National Laboratory and the University of Tennessee said in a research report in the Physical Review Letters.
The research team, directed by ORNL-UT Governor's Chairs Jeremy Smith and Alexei Sokolov, combined high-performance computer simulation with neutron scattering experiments to understand atomic-level motions that underpin the operations of proteins.
"The analysis and interpretation of neutron scattering spectra are always difficult for complex molecules such as proteins," said Smith, who directs ORNL's Center for Molecular Biophysics. "We've performed experiments and then shown that simulation can provide a clear view of them. It allows us to see through the complexity and find out what motions are going on."
Defining the motions present - localised diffusion, methyl group rotations and jumps - is important as it allows scientists to think about how the motions determine the functions of proteins that are critical to all life.
"First, we found that experiment and simulation agreed perfectly with each other, which is remarkable," Smith said. "Second, the simulations told us that this type of neutron scattering could be interpreted in a very simple way."
Although the team performed its research on a particular protein called lysozyme, a natural antibacterial enzyme found in tears, saliva and egg whites, the researchers anticipate the technique will have a much broader impact in the neutron scattering community, aiding research in areas such as biofuel design or environmental remediation.