Neuroscientist to map brain connections that reveal memories and personalities
11 Feb 2012
The human brain has 100 billion neurons, each of which is connected to many others. Neuroscientists believe these connections hold the key to our memories, personality and even mental disorders such as schizophrenia. By unraveling them, we may be able to learn more about how we become our unique selves, and possibly even how to alter those selves.
Mapping all those connections may sound like a daunting task, but MIT neuroscientist Sebastian Seung believes it can be done - one cubic millimetre of brain tissue at a time.
''When you start to explain how difficult it would be to find the connectome of an entire brain, people ask, 'What's the point? That seems too far off.' But even finding or mapping the connections in a small piece of brain can tell you a lot,'' says Seung, a professor of computational neuroscience and physics at MIT.
Even more than our genome, our connectome shapes who we are, says Seung, who outlines his vision for connectome research in a new book, Connectome, published this month by Houghton Mifflin Harcourt. ''Clearly genes are very important, but because they don't change after the moment of conception, they can't really account for the effects of experience,'' he says.
Seung envisions the brain's connections as the ''streambed'' through which our consciousness flows. At a molecular level, that streambed consists of billions of synapses, in which one neuron sends signals to the next via chemical neurotransmitters. While scientists once believed that synapses could not be changed after formation, they now know that synapses are continuously strengthening, weakening, disappearing and reforming, as we learn new things and have new experiences.
While neuroscientists have long hypothesised that the key to our unique selves lies in those connections, this has proven impossible to test because the technology to map the connections did not exist. That is now changing, due to the efforts of Seung and a handful of other neuroscientists around the world.