Record-speed data transmission could make big data more accessible

20 Apr 2016

1

With record-breaking speeds for fibre-optic data transmission, University of Illinois engineers have paved a fast lane on the information superhighway – creating on-ramps for big data in the process.

Graduate researcher Michael Liu will present the research team's developments in oxide-VCSEL technology, which underpins fiber-optic communications systems, at the Optical Fiber Communication Conference and Exposition today in Anaheim, California.

The research team was led by electrical and computer engineering professor Milton Feng – who will be in attendance at the conference – and also included professor emeritus Nick Holonyak Jr.and graduate researcher Curtis Wang.

As big data has gotten bigger, the need has grown for a high-speed data transmission infrastructure that can accommodate the ever-growing volume of bits transferred from one place to another.

''Our big question has always been, how do you make information transmit faster?'' Feng said. ''There is a lot of data out there, but if your data transmission is not fast enough, you cannot use data that's been collected; you cannot use upcoming technologies that use large data streams, like virtual reality. The direction toward fiber-optic communication is going to increase because there's a higher speed data rate, especially over distance.''

Feng's group has been pushing VCSEL technology to higher speeds in recent years, and in 2014 was the first group in the US to achieve error-free data transmission at 40 gigabits per second (denoted as Gbps). Now, in a series of conference papers, they report 57 Gbps error-free data transmission at room temperature, as well as 50 Gbps speeds at higher temperatures up to 85 degrees Celsius (185 degrees Fahrenheit).

Achieving high speeds at high temperatures is very difficult, Feng said, due to the nature of the materials used, which prefer lower temperatures. However, computing components grow warm over extended operation, as anyone who has worked on an increasingly heated laptop can attest.

''That's why data centres are refrigerated and have cooling systems,'' Feng said. ''For data centres and for commercial use, you'd like a device not to carry a refrigerator. The device needs to be operational from room temperature all the way up to 85 degrees without spending energy and resources on cooling.''

Feng hopes that the conference presentations and papers will prove that high-speed operation at high temperatures is scientifically possible and useful for commercial applications.

''This type of technology is going to be used not only for data centers, but also for airborne, lightweight communications, like in airplanes, because the fiber-optic wires are much lighter than copper wire,'' Feng said. ''We believe this could be very useful for industry. That's what makes the work so important to us.''

 

Business History Videos

History of hovercraft Part 3 | Industry study | Business History

History of hovercraft Part 3...

Today I shall talk a bit more about the military plans for ...

By Kiron Kasbekar | Presenter: Kiron Kasbekar

History of hovercraft Part 2 | Industry study | Business History

History of hovercraft Part 2...

In this episode of our history of hovercraft, we shall exam...

By Kiron Kasbekar | Presenter: Kiron Kasbekar

History of Hovercraft Part 1 | Industry study | Business History

History of Hovercraft Part 1...

If you’ve been a James Bond movie fan, you may recall seein...

By Kiron Kasbekar | Presenter: Kiron Kasbekar

History of Trams in India | Industry study | Business History

History of Trams in India | ...

The video I am presenting to you is based on a script writt...

By Aniket Gupta | Presenter: Sheetal Gaikwad

view more
View details about the software product Informachine News Trackers