Intel developing self-sustaining sensors for the future

08 Dec 2008

Intel is developing self-powered microchips that could be implanted in the human body, a mobile phone, a building, or anyplace else where people wish to gather information.

Called a "wireless identification and sensing platform," or WISP, the devices were among several technologies described last Friday by Intel CTO Justin Rattner during a meeting with reporters in San Francisco. Most of the technologies discussed are under development in Intel labs and are unlikely to reach the marketplace in products for at least three to five years.

All of the inventions were designed to be energy-efficient. The WISP sensors would use Intel technology for drawing power from the environment. "These are install-and-forget kind of systems," Rattner said.

The power would come from wireless transmissions, such as a Wi-Fi hotspot, a cellular tower, or a TV broadcast, making it possible for the sensors to continuously gather information in almost any environment, Rattner said. In an experiment conducted by Intel in San Francisco, sensors implanted in street sweepers were used to monitor air quality throughout the city.

"We could, in fact, litter the planet with these things," he said. "Rather than depend on satellite information, we could literally get instantaneous, near-global indication of the state of the planet."

Self-powered sensors could one day go into the human body to monitor health-related activity, such as the beat of a heart. If researchers could shrink detectors to the molecular level, they could one day be capable of detecting viruses in the environment to determine the potential health risk.

Within the data centre, sensors could be used to map the heat levels of the different systems in order to create a "thermally aware load management" system, Rattner said. Systems that are running hot could have some of their workloads shifted to idle systems, thereby lowering the overall temperature, which would lower the demand on cooling systems.

Intel has also designed a self-charging neural implant that can monitor bodily functions and transmit its readings wirelessly, Rattner said. "I never have to ... come along with some sort of external fixture and have to recharge this. These become ... install-and-forget systems, because they can scavenge energy from the environment and power themselves up," he explained.

Similar technology is already in use, though not on a wide scale. There are already watches available that are powered by body heat, as well as prototype smartphones with display screens that double as solar cells. Intel is also looking at powering a mobile phone by harvesting the energy the user generates by moving the phone's trackball. The radiation of cell phone or TV signals might also be used to power devices.

"Wouldn't it be nice if, in fact, you were able to go almost indefinitely without charging the battery, if you were able to scavenge enough free energy from the environment?" Rattner said.

Intel's initial efforts revolve around the sensors, which could power themselves using free energy. Recharging themselves by scavenging free energy allows the sensors to continuously record and transmit readings over wireless networks, without any human involvement.

For example, an accelerometer buried in the wall of a building could automatically recharge itself by harvesting the energy of radiation from a cell phone tower, allowing it to continuously take and transmit readings of the building's movement.

"It wouldn't have any batteries, you wouldn't have to come out and service them, and you don't have to run any power. They are completely self-contained, and most importantly, self-powered as a result of scavenging energy from the environment," Rattner said.

For Intel, sensor technology "might turn into a business opportunity" in the future, Rattner said. But a lot of the other experimental technology is likely to be licensed for use by other companies and not necessarily end up as separate Intel products.

An example of the latter is work Intel is doing with manufacturers of power supplies for computing systems. Today, most power supplies use multiple voltage regulators to take incoming AC power from an outlet and transform it into DC power at different voltage levels to power multiple components within the system, such as hard disk drives and graphics and sound cards.

The problem with the use of multiple voltage regulators is they aren't very power-efficient. As a result, traditional power supplies are from 55 per cent to 70 per cent efficient, Rattner said. Intel is working on technology that would let a microchip regulate power, which would boost the efficiency to 90 per cent.

Intel is building power management within a microchip, so power levels could be adjusted microsecond by microsecond in following the fluctuations in energy needed to power CPUs or modules within a chipset, Rattner said. Today, power levels have to be kept higher than needed during light workloads to make sure enough energy is available to meet sudden demands for processing power.  Moving power management from software to hardware within a computer would improve energy efficiency during light workloads to 70 per cent from 10 per cent today, Rattner said.

Intel has not marketed any of the aforementioned sensors yet, as research is still ongoing, Rattner said. Sensors use just a fraction of the power demanded by typical mobile devices, and it may take a while before the energy-harvesting technology can power larger items.

For now, the research is intended to provide a broader view of energy harvesting, and many Intel product groups are showing interest in it. "We haven't been driving it as an Intel product; it's not on anyone's road map at this point. It's part of our broader effort in both sensors and energy harvesting," Rattner said.